报告题目:Rich phase diagram of layered iridates upon artificial engineering
报告人:郝林,中国科学院合肥物质科学研究院强磁场中心研究员
报告时间:2022年9月15日上午12:00
腾讯会议:283 558 136
报告摘要
While manipulation of antiferromagnetic (AFM) order arises to the forefront of spintronics, it is a long-standing fundamental problem of correlated electron physics. In this talk, I will present couple exciting findings in the strong spin-orbit coupled correlated system, layered iridates. A series of artificial layered iridates [(SrIrO3)1/(SrTiO3)m] were prepared to engage with a staggered magnetic field effect due to the strong spin-orbit interaction. By tuning the SrTiO3 spacer, the AFM structure of the Mott insulating state can be engineered. Upon driving the AFM structure to the two-dimensional limit at m = 2, a hidden SU(2) symmetry is achieved, which was first proposed in cuprates but never experimentally realized. As a result, while the ordering temperature is significantly reduced by strong critical fluctuations, the staggered magnetic field effect allows an external field to greatly suppress the AFM fluctuations and enable a giant response of the AFM order. With a partially released charge degree of freedom at m = 1, the staggered magnetic field effect leads to an intriguing positive anomalous magnetoresistance that probes the AFM susceptibility, because of the strong interplay between charge and longitudinal spin fluctuations. After introducing a gauge-invariant spin-dependent hopping on the square lattice, an exceptionally large magnon gap and an interesting anomalous Hall effect were obtained, highlighting the intriguing correlation-topology interplay in the intermediate regime.
报告人简介
郝林,中国科学院合肥物质科学研究院强磁场中心研究员。2016 年博士毕业于中国科学技术大学物理系,2016 年-2020 年在美国田纳西大学从事博士后训练,2020 年起任职于中国科学院合肥物质科学研究院。长期从事过渡金属氧化物等复杂体系的演生效应研究,近年来利用原子级精准制备、同步辐射等技术对铱氧化物四方晶格体系中的磁电输运、低维磁性等现象开展了系统研究。目前已以第一/通讯作者身份在 Nature Physics、Physical Review X、Physical Review Letters、Nature Communications等高水平国际学术期刊发表论文二十余篇。
举办单位:
永利总站62111科学技术协会
永利总站62111